www.transicionestructural.NET es un nuevo foro, que a partir del 25/06/2012 se ha separado de su homónimo .COM. No se compartirán nuevos mensajes o usuarios a partir de dicho día.
0 Usuarios y 5 Visitantes están viendo este tema.
no es que no sea por joder, pero es que los brotes verdes y otras ideas saduceas generan muchos fracasos personales, pero claro, si vamos a tener una legislacion que proteja unas mamandurrias y unas extracciones de capital ......Cita de: Cría cuervos... en Enero 22, 2013, 17:10:08 pm......... la única salida al sector de la construcción (las ingenierías y arquitecturas están esperando la aprobación de los decretos pendientes como agua de mayo), .......El real decreto obligará, como pasa en Europa, ....... se provea al futuro usuario de un certificado ....... Además se generará una etiqueta ................ Yo sí creo que va a animar a los titulares de los pisos a acometer reformas, ........, se va a crear una corriente de opinión..... pero si vamos a la laminacion de occidente, no parece que haya que proteger lo que cuesta monises y tendria que desaparecer; y si ademas otros en situacion similar lo han montao en la epoca de bonanza (occidente), miel sobre hojuelas, ventaja comparativa a favor;quizas me equivoque, pero parece que en esto me pasa como en otras cosas en el foro, yo estoy pensando en el menos malo de los caminos de laminacion y en lo que venga despues de la TE; y otros estan pensando en "como se sale de la crisis";si no se me ofenden les monto un chisteque hagan una ley y etiqueta sobre la idoneidad del diseño de los visillos, y al que no la cumpla que le obliguen a poner unas cenefas; la etiqueta que la de una contrata terruñera y la cenefa que tenga que ser del ECI (por aquello de eddy y de que aqui va a quebrar ......)y citando a ilustres foreros, un saludo a r.g.c.i.m., que no se le ve el pelo;
......... la única salida al sector de la construcción (las ingenierías y arquitecturas están esperando la aprobación de los decretos pendientes como agua de mayo), .......El real decreto obligará, como pasa en Europa, ....... se provea al futuro usuario de un certificado ....... Además se generará una etiqueta ................ Yo sí creo que va a animar a los titulares de los pisos a acometer reformas, ........, se va a crear una corriente de opinión.....
Creo que el proyecto plantea una serie de retos que serán decisivos en las instalaciones de aerogeneradores off shore. El primero de todos es como montar todo el parque sin que los operarios se vean "excesivamente dañados" por la radiación de fondo del lugar, el segundo es cómo evacuar semejante cantidad de energía instalando los cables de drenaje en una zona tan contaminada, el tercero es el propio sistema de anclaje de los aerogeneradores para poder aguantar tsunamis de más de 10 metros de altura.
Cita de: Kaprak63 en Enero 21, 2013, 23:01:56 pmJapón sustituye la central nuclear de Fukushima por un parque eólico con 143 aerogeneradoresHaced vosotros la cuenta, pero según mis cálculos harían falta 54 campos eólicos como este para compensar la producción de Fukushima-Daichi. Vamos a ver el reactor 1: 450 MW, el 2, 3 y 4 700MW cada uno, el 5 y el 6 1.000 MW. En total 8.550 MW. Cada aerogenerador proporciona un máximo de 2 MW. El factor de carga del sector eólico se sitúa entre 1/6 y 1/3 en tierra y puede llegar hasta un 1/2 en el mar. El factor de carga de la nuclear estará en 0,9 Por tanto: (8.550*0.9)/(143*2*0,5)=53,8Esto es sólo para Fukushima-Daichi. Si sumamos Fukushima-Daini la cantidad de energía que da este parque eólico es insignificante para compensar la energía de estas centrales.
Japón sustituye la central nuclear de Fukushima por un parque eólico con 143 aerogeneradores
Cita de: Diverso en Enero 22, 2013, 18:58:51 pmCita de: Kaprak63 en Enero 21, 2013, 23:01:56 pmJapón sustituye la central nuclear de Fukushima por un parque eólico con 143 aerogeneradoresHaced vosotros la cuenta, pero según mis cálculos harían falta 54 campos eólicos como este para compensar la producción de Fukushima-Daichi. Vamos a ver el reactor 1: 450 MW, el 2, 3 y 4 700MW cada uno, el 5 y el 6 1.000 MW. En total 8.550 MW. Cada aerogenerador proporciona un máximo de 2 MW. El factor de carga del sector eólico se sitúa entre 1/6 y 1/3 en tierra y puede llegar hasta un 1/2 en el mar. El factor de carga de la nuclear estará en 0,9 Por tanto: (8.550*0.9)/(143*2*0,5)=53,8Esto es sólo para Fukushima-Daichi. Si sumamos Fukushima-Daini la cantidad de energía que da este parque eólico es insignificante para compensar la energía de estas centrales.Bueno, no hay que ovidar que la producción de Fuckushima Daichi es CERO. Cuatro rentabilísimos reactores de un huevo de MW se han ido al pedo y su factor de carga a día de hoy dista bastante del 90%.Pero tus cuentas son bastante acertadas (salvo que ya tienes aerogeneradores comerciales de 3MW). Un parque de 8,5 GW (aunque sean nominales) es una burrada monumental (pásate por el hilo de China) y con 143 aerogeneradores no llegan ni de coña.
Por el amor de Dios que nos auditen las cuentas desde Europa de una vez.http://www.energias-renovables.com/articulo/soria-vuelve-a-culpar-a-las-renovables-20130122Soria vuelve a culpar a las renovables del déficit de tarifaER Martes, 22 de enero de 2013Las renovables son responsables del incremento del déficit de tarifa registrado en 2012, dice el ministro. “No digo que sean las únicas”. Pero es una de las causas que ha citado, junto con la menor demanda y el hecho de que los Presupuestos Generales del Estado no se hayan hecho cargo de los costes extrapeninsulares.Si los expertos que siguen la evolución del mercado eléctrico no se equivocan, el ministro de Industria, Energía y Turismo, José Manuel Soria, se puede pasar la vida echando la culpa del déficit de tarifa a las renovables. Porque sin acometer otro tipo de medidas que vayan más allá de la moratoria a las primas de las energías limpias, el problema del déficit no parece tener una solución fácil.Soria, que ha participado hoy en Foro Cinco Días, ha reconocido que “en 2012 habrá 3.500 millones de euros adicionales a los 1.500 millones del objetivo inicial para el ejercicio, de modo que la deuda eléctrica del año rondará los 5.000 millones. Si no se hubiesen tomado las medidas ya aprobadas, el desfase habría sido de 8.000 ó 9.000 millones”.Y ha puesto cara a los culpables: el desfase del año se ha debido a la caída de ingresos en el sistema por una menor demanda, la desviación de 1.200 millones en la previsión de primas al régimen especial (en lugar de los 7.200 millones previsto en 2012, los datos de la CNE apuntan que se abonarán 8.400 millones) y a que los Presupuestos Generales del Estado no han asumido 1.800 millones de los costes extrapeninsulares.¿Y qué piensa hacer el Gobierno para que el déficit no siga creciendo? Los planes pasan por la “transformación de determinados aspectos regulatorios” que llevarán a revisar los costes de la generación, el transporte, la distribución, los pagos por capacidad o el coste extrapeninsular. Soria también se ha referido, entre esos planes, a la incorporación del balance neto y la generación distribuida, sin dar más detalles.La visión que el ministro tiene de las renovables quedó patente al hablar de la necesaria “pedagogía entre los consumidores” para que sepan que detrás de cada tecnología hay unos costes que inciden en el recibo de la luz. Los usuarios se van a decantar siempre por las tecnologías más verdes, pero su criterio podría cambiar “cuando sepan el coste de la energía”.
Cita de: Diverso en Enero 22, 2013, 18:58:51 pmCita de: Kaprak63 en Enero 21, 2013, 23:01:56 pmJapón sustituye la central nuclear de Fukushima por un parque eólico con 143 aerogeneradoresHaced vosotros la cuenta, pero según mis cálculos harían falta 54 campos eólicos como este para compensar la producción de Fukushima-Daichi. Vamos a ver el reactor 1: 450 MW, el 2, 3 y 4 700MW cada uno, el 5 y el 6 1.000 MW. En total 8.550 MW. Cada aerogenerador proporciona un máximo de 2 MW. El factor de carga del sector eólico se sitúa entre 1/6 y 1/3 en tierra y puede llegar hasta un 1/2 en el mar. El factor de carga de la nuclear estará en 0,9 Por tanto: (8.550*0.9)/(143*2*0,5)=53,8Esto es sólo para Fukushima-Daichi. Si sumamos Fukushima-Daini la cantidad de energía que da este parque eólico es insignificante para compensar la energía de estas centrales.Si pones aerogeneradores de 2MW, sí. Pero no tiene sentido, habiéndolos en breves especiales para eólica marina de 10MW. En ese caso se divide por cinco.En cualquier caso no deja de ser un lavado de cara. Japón tiene costa para dar y tomar y si quisieran podrían producir una cantidad enorme.
Damos mucha publicidad a un parque eólico (de juguete) y nos callamos los cientos de megavatios térmicos que estamos instalando....
Summary: A startup backed by Google, Khosla Ventures, Kleiner Perkins and Paul Allen’s investment firm, called AltaRock Energy has delivered an important breakthrough for the next-generation of geothermal technology at a site in Bend, Oregon. Not a lot of startups tackle the field of geothermal power, which entails tapping into hot rocks deep in the Earth to produce energy and electricity. That’s because it can be an expensive proposition, and can require extensive permits and environmental reports. But a rare startup called AltaRock Energy has recently delivered a promising breakthrough that it says can lead to the commercialization of its next-generation geothermal technology.AltaRock Energy — which has backing from venture capitalists, as well as Google and Microsoft co-founder Paul Allen’s investment firm — has been working on enhanced (sometimes called engineered) geothermal tech. This technology drills wells deep into the ground, injects them with cold water to fracture the hot rocks, and creates a geothermal source of power where none was naturally occurring. Traditional geothermal systems, in contrast, tap into naturally occurring geothermal reservoirs (you know, the kind you see on the side of the road in Yellowstone National Park). The promise of next-gen geothermal power Geothermal power has massive potential in many areas of the U.S. but it has long remained a niche technology. A study that came out a few years ago from MIT found that enhanced geothermal system technology could create 100 GW of electricity by 2050 if the technology got reasonable investment in R&D — 100 GW is equivalent to the power produced by 100 large coal power plants. But given that traditional geothermal systems are the only ones in use, geothermal power sources have been stuck in isolated areas that have geothermal activity.Geothermal power is also the holy grail of clean power because it’s not intermittent like solar or wind power. Geothermal power can produce electricity 24/7 — including at night — while wind power drops off when it isn’t windy, and solar power ends when the sun goes down. Constant power like this is called baseload power, and it’s one of the reasons why coal and natural gas are so widely-used.AltaRock Energy said that it has reached a milestone at its demonstration site in Bend, Oregon, which it believes is a good sign that it’ll be able to commercialize its enhanced geothermal tech. AltaRock CEO and founder Susan Petty told me that the company has been able to create multiple, stimulated geothermal areas, from a single drilled well. “This has never been done before,” said Petty, who has been involved with geothermal stimulation since the 1970s.Creating multiple geothermal zones from one well is important, because it means more geothermal power can be produced and the process becomes a lot cheaper in the long run. Enhanced geothermal systems in the past have created a single stimulated zone, but none — until now — have created multiple zones. While traditional geothermal can be cheaper than coal power, enhanced geothermal systems are generally more expensive than traditional ones. But being able to create multiple geothermal zones from one well brings down the overall cost of enhanced geothermal by 50 percent, Petty said.The site in Bend was an area where geothermal developer Davenport Newberry had already drilled a well and the site had no stimulated geothermal area before AltaRock installed its technology. Davenport Newberry gave AltaRock access to the well and agreed to share data with the startup. The Department of Energy also gave AltaRock a $21.4 million grant to work on the project. Petty said the well was the equivalent of “a blank slate.” So what next? AltaRock is still in the testing and research phase. Now that it’s stimulated multiple geothermal zones at the site, it still needs to run injection tests and test the heat exchange areas. It also needs to drill a production well in the stimulated zones, which could happen by the end of this year or early 2014. Enhanced geothermal sites need at least two wells, one for injecting and one for producing the power.After this testing phase, and if everything is on track, AltaRock plans to build a demonstration sized power plant on the site, and eventually a utility-scale power plant there, too. Larger plants need more permitting, and more money. So this could take many more years. Petty said the company is now looking to raise project financing from strategic partners that are interested in seeing this brand new next-gen tech commercialized.AltaRock has already raised $26 million from Google, Kleiner Perkins, Khosla Ventures and Vulcan Capital, the investing arm of Vulcan, which was founded by Microsoft co-founder Paul Allen. But VCs probably won’t want to back this kind of capital intensive project, particularly now that greentech investing has gone out of vogue in the Valley.Despite the breakthrough, AltaRock still faces hurdles. The company was originally working on a demonstration project in Northern California back when it was founded in 2007 when technical problems with drilling through hard rocks prompted the company to give up that project in 2009.That California project also faced protests from residents living nearby who were worried about seismic activity created by the drilling. Rock fracturing creates disturbances deep inside the Earth, and some critics say the technique could create earthquakes powerful enough to threaten the safety of nearby residents. Such concern shut down an enhanced geothermal project in Switzerland.But Petty said that at its project in Bend it created a dialogue with residents and protestors in the community, and the company did constant testing and monitoring of the system throughout the stimulation work. The seismic activity was so small as to be virtually undetected by nearby residents — snow falling and trains running through the area had higher seismic activity than the geothermal site, said Petty.These type of new geothermal projects also generally take a lot longer than expected to build. Just getting permits for this initial phase of the Bend project took AltaRock two and a half years, when Petty said she expected it to happen in closer to one year. But if there’s anything we’ve learned from the cleantech boom and bust of the last six years, it’s that clean power innovation takes time.
Seguro que España tiene un enorme potencial geotérmico desaprovechado. En Canarias se debería empezar a diseñar, aprovechando entre otras cosas la peculiaridad de sus edificaciones (más bajas que la media fuera del turismo, allí se lleva la "casa terrera" con azotea plana), el incentivo adecuado para que las casas tengan agua caliente solar y placas fotovoltaicas. Andalucía es otro sitio ideal para ir lanzando masivamente estas tecnologías, claro que permitirán a la gente independizarse de la tiranía gasera y en parte de la eléctrica y eso tendá sus detractores, no pocos de ellos expolíticos que viven de esos chiringuitos.http://www.upcomillas.es/catedras/crm/descargas/2010-2011/aula%209.03.2011.pdf
Many conservatives appear to have an unshakable, bedrock belief that solar power will never be cost-effective. Talk about solar, and conservatives often won't even look at the numbers - they'll just laugh at you. Mention that solar power recently provided almost half of Germany's electricity at peak hours, and they'll say things like "Oh, Germany's economy must be tanking, then." It seems like almost a fundamental axiom of their worldview that solar will always be too expensive to exist without government subsidies, and that research into solar is therefore money flushed down the toilet. I suspect that many of these conservatives came of age in the 1970s, when solar was first being mooted as the "green" alternative to fossil fuels. They probably saw solar as a crypto-socialist plot; by scaring everyone about global warming and forcing businesses to convert to expensive solar power, "greens" would impose huge a implicit tax on business, causing the capitalist system to grind to a halt. Maybe some people did support solar for just such a (silly) reason. But far-sighted people knew that technologies often require lots of government support to develop (basic research being, after all, a public good), and they saw that fossil fuels would have to start getting more expensive someday. And now, after decades of research and subsidies, we may be on the verge of waking up into a whole new world. The cost of solar power has been falling exponentially for the past 35 years. What's more, there is no sign at all that this cost drop is slowing. New technologies are in the pipeline right now that have the potential to make solar competitive with coal and natural gas, even with zero government subsidy. Here are a few examples: <blockquote> 1. Nano-templated molecules that store energy MIT associate professor Jeffrey Grossman and others successfully created a new molecule [to] "lock in" stored solar thermal energy indefinitely. These molecules have the remarkable ability to convert solar energy and store it at an energy density comparable to lithium ion batteries... 2. Print solar cells on anything An MIT team led by professor Karen Gleason has discovered a way to print a solar cell on just about anything...The resulting printed paper cell is also extremely durable and can be folded and unfolded more than 1,000 times with no loss in performance. 3. Solar thermal power in a flat panel Professor Gang Chen has been working on a revolutionary new way to make solar power — micro solar thermal — which could theoretically produce electricity at 8 times the efficiency of the word's best solar panel...Because it is a thermal process, the panels can heat up from ambient light even on an overcast day, and these panels can be made from very inexpensive materials. 4. A virus to improve nano-solar cell efficiency MIT graduate students recently engineered a virus called M13 (which normally attacks bacteria) that works to precisely space apart carbon nanotubes so they can be used to effectively convert solar energy... 5. Transparent solar cell could turn windows into power plants ...Electrical engineering professor Vladimir Bulovic has made a breakthrough that could eliminate two-thirds of the costs of installing thin-film technology [on windows] by incorporating a layer of new transparent organic PV cells into the window glazing. The MIT team believes it can reach a whopping 12 percent efficiency at hugely reduced costs[.]</blockquote> And then there are the technologies that are out of the laboratory and being sold to customers. For example, here's this article from the website Grist: <blockquote> The company is called V3Solar (formerly Solarphasec) and its product, the Spin Cell, ingeniously solves two big problems facing solar PV. </blockquote> <blockquote> First, most solar panels are flat, which means they miss most of the sunlight most of the time...The Spin Cell is a cone...The conical shape catches the sun over the course of its entire arc through the sky, along every axis. It’s built-in tracking. </blockquote> <blockquote> The second problem: Solar panels produce much more energy if sunlight is concentrated by a lens before it hits the solar cell; however, concentrating the light also creates immense amounts of heat, which means that concentrating solar panels (CPV) require expensive, specialized, heat-resistant solar cell materials. </blockquote> <blockquote> The Spin Cell concentrates sunlight on plain old (cheap) silicon PV, but keeps it cool by spinning it... </blockquote> <blockquote> [T]he company tells CleanTechnica that it already has over 4 GW of requests for orders. There is 7 GW of installed solar in the U.S., total... </blockquote> <blockquote> Maybe this tech or this company will peter out before reaching mass-market scale. But advances in solar technology are coming faster and faster. (Small, distributed energy technologies are inherently more prone to innovation than large, capital-intensive energy technologies.)</blockquote> As the article says, this could easily be just an illusion. Don't believe the hype. But the point is that there are now lots of companies and academic labs making claims like this, and the rate appears only to be increasing. Sooner or later - and recent trends suggest "sooner" rather than "later" - one of these claims is going to be right. And on that day, we will wake up into a whole new world. Cheap solar energy will change pretty much everything. First of all, it will cause a huge boom among essentially all industries in every country (except for competing energy technologies, of course). Energy powers everything. So far, with nuclear technology stalled, we don't have anything cheaper than coal and gas for producing electricity. Our only hope for cheaper energy has been to find better ways to mine coal and gas. With cheap solar, that is no longer true. The Great Stagnation - which many suspect is really just an energy technology stagnation - would suddenly be a lot less scary. Mention this possibility to conservatives, and they will of course be skeptical. These days, you are less likely to hear outright denials of solar's cheapness; instead, the knee-jerk conservative response is "Well what about the intermittency? Solar power only works during the day!" Two things to note about this. First, it's very telling that solar detractors didn't talk much about intermittency a decade ago. They didn't have to; solar was too expensive even at high noon. The fact that detractors are falling back on the intermittency argument shows how much the game has changed. Second, the problem of intermittency isn't really a big one. Most electricity is used during "peak" hours, which incidentally is when the sun is shining. It's easy to imagine a future in which solar electricity powers the world during the day, and then gas takes over at night. But that will mean solar is the main source, and gas only a sideshow. (And that's even without any breakthroughs in energy storage technology.) Anyway, it's looking more and more likely that conservatives are going to wake up one day soon, and look around and blink and find that one of their bedrock beliefs has suddenly been invalidated on a grand scale. If they're smart, conservatives will take this opportunity to discard the old belief that solar is the thin wedge of crypto-socialism, and recognize it for what it truly is - a breakthrough technology, being developed by entrepreneurs for profit on the free market. In other words, exactly the kind of thing they should applaud. Update: A commenter writes: <blockquote> Great discussion. I am a conservative and I own a solar energy company. I do not understand your premise on conservatives aversion to solar power. By nature most conservatives I know desire to break free from the control of the energy,environmental, foreign wars and government lobby, and solar allows us to get there.</blockquote> Good point. Some other good reasons why conservatives should be more pro-solar. Update 2: I guess I should give a concrete prediction about when solar will actually start being cost-competitive with fossil fuels, without subsidies, in some locations for some customers. My prediction is: around 2020, or 7 years from now. 95% credible interval would be...um, let's see...2014 to 2040. So that's a fairly wide interval. Update 3: Commenter Kevin Dick provides some numbers regarding current costs: <blockquote> [T]he US DOE actually tries to calculate the cost of various energy sources using a complicated levelized cost model. See http://www.eia.gov/forecasts/aeo/electricity_generation.cfm. For power plants coming on line in 2017, their nationwide average estimates in $/MWH are: </blockquote> <blockquote> Conventional Coal: 98Convenional CC Gas: 66Solar PV: 153 </blockquote> <blockquote> On average, PV has a ways to go. However, the lowest regional cost of PV is 119, while the highest regional cost of coal is 115 and advanced nuclear is 119. </blockquote> <blockquote> So there are probably places today where PV is cost competitive. But the market can surely figure this out at least as well as the government.</blockquote> If these numbers are right, it means that we are just now hitting the point where solar power makes economic sense in a few places without any government subsidies. That's pretty amazing, if you ask me. I wonder how many of those places there will be in 7 years...